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Abstract

An acyclic coloring of a graph is a proper coloring such that any two color classes
induce a forest. A star coloring of a graph is an acyclic coloring with the further
restriction that the forest induced by any two color classes is a disjoint collection of
stars. We consider the behavior of these problems when restricted to certain classes
of graphs. In particular, we give characterizations of the classes of graphs for which
two or more of these restricted coloring problems are equivalent, in that they share
the same set of solutions. Surprisingly, our characterizations of these classes in terms
of forbidden induced subgraphs equate them with classes that are well-studied in the
literature. We extend this framework to encompass other restricted coloring problems,
both known and new, and outline a method for obtaining results similar to those given
here.

We also explore the algorithmic implications of these results in terms of finding
optimal acyclic and star colorings on certain classes of graphs. We show that optimal
acyclic colorings of certain subclasses of even-hole-free graphs can be found in polyno-
mial time, and that optimal acyclic and star colorings of trivially perfect graphs can
be found in linear time.

1 Introduction

A proper coloring (or coloring) of a graph G = (V,E) is a mapping φ : V → N+ such
that if ab ∈ E then φ(a) 6= φ(b). An acyclic coloring of a graph is a proper coloring
such that the subgraph induced by the union of any two color classes is a forest. A star
coloring of a graph is a coloring such that the subgraph induced by the union of any two
color classes is a disjoint collection of stars. Let Φ(G) denote the set of all colorings of
a graph G. Similarly, let Φa(G) and Φs(G) denote the sets of acyclic and star colorings
of G, respectively. The following statement follows from the observation that a disjoint
collection of stars constitutes a forest.

Proposition 1.1. For every graph G, Φs(G) ⊆ Φa(G) ⊆ Φ(G).

In the first part of this paper, we discuss the properties of acyclic and star colorings
when restricted to particular classes of graphs. Consider the following recent result.

Theorem 1.2 (Gebremedhin et. al. [8]). If G is a chordal graph, then Φ(G) = Φa(G).
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In Section 2, we supplement Theorem 1.2 with a sufficient condition in order to find a
characterization of the graphs for which Φ(G) = Φa(G); it is shown that they are exactly
the even-hole-free graphs. Moreover, we show that the graphs for which Φa(G) = Φs(G)
are exactly the cographs, and the graphs for which Φ(G) = Φs(G) are exactly the trivially
perfect (or quasi-threshold) graphs.

All of the coloring problems discussed so far are NP-complete on general graphs, which
motivates our search for tractable restricted classes. In Section 3 we shift our focus to
the algorithmic complexity of finding optimal restricted colorings on special classes of
graphs, beginning with a broad summary of known algorithms and hardness results for
acyclic and star coloring. We focus on these particular coloring problems in part because
of their applications to the optimal evaluation of sparse Hessian matrices, where the graph
corresponds to the sparsity structure of matrix, which is symmetric. The star and acyclic
coloring problems correspond to direct and indirect schemes for recovery of the Hessian,
respectively. See [10] for a survey of coloring problems as they relate to sparse derivative
matrices.

The authors of [8] discuss the case when the Hessian matrix is known in advance to
have banded structure. It is shown that the resulting class of graphs is properly contained
within the class of chordal graphs. Consequently, Theorem 1.2 implies that any solution
to the classical coloring problem is also a solution to the acyclic coloring problem. Because
chordal graphs can be properly colored in O(n + m) [12, Chapter 4.7], the same is true
for acyclic coloring. We explore this concept in more depth in Section 3, where we give
similar, more general results that follow from the characterizations given in Section 2.

In Section 4 we outline the extension of and possible generalizations of these ideas to
coloring problems with other restrictions, both known and new, which form a poset with
respect to inclusion on their respective sets Φ of all valid colorings. Each of the classes
mentioned above has a nice characterization in terms of forbidden induced subgraphs;
we discuss the possible use of this as a framework for a more general description of the
classes of graphs for which certain relationships occur between different restricted coloring
problems.

2 When are two restricted coloring problems equivalent?

A graph is even-hole-free if it contains no induced cycle with an even number of vertices.
Even-hole-free graphs can be recognized in polynomial time [3], and are a superclass of
the chordal graphs.

The following theorem appears as an unproven observation in [13]. We include a proof
here for the sake of completeness.

Theorem 2.1. A graph G is even-hole-free if and only if every coloring of G is also an
acyclic coloring.

Proof. (⇒) : Assume that G is even-hole-free. We will show that any distance-1 coloring
of G is also an acyclic coloring. Any odd cycle will certainly require at least three colors,
so we restrict our attention to even cycles. Let C be some even cycle in G. Because G is
even-hole-free, C must have at least one chord ab which we can view as the intersection of
two smaller cycles C1, C2 formed by vertices from C. Since C is an even cycle, either |C1|
and |C2| are both even or both odd. If both |C1| and |C2| are odd, then they both require
three distinct colors. If both |C1| and |C2| are even, then treat them each recursively.
Proceeding by induction over the size of C, we conclude that C must use at least three
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distinct colors. Thus any distance-1 coloring of G is also an acyclic coloring, and we are
done with this direction.

(⇐) : Let G have the property that every distance-1 coloring of G is also an acyclic
coloring, and assume for the sake of contradiction that G contains an even induced hole.
Then there exists at least one coloring of G that uses only two colors for the vertices in C.
As an example, we may take the coloring that assigns the colors 1, 2 alternating around
the vertices in C, and assigned every vertex not in C its own distinct color. The result
will be a distance-1 coloring that is not an acyclic coloring, which is a contradiction. Thus
G must be even-hole-free, which completes the proof.

Corollary 2.2. If G is an even-hole-free graph, then χ(G) = χa(G).

We now prove a result for star coloring that is analogous to Theorem 2.1. A graph G
is trivially perfect if for every induced subgraph G′ of G the number of maximal cliques in
G′ is equal to the size of the largest independent set in G′. Trivially perfect graphs were
first studied by Wolk [23], who encountered them while searching for a characterization of
comparability graphs. Other names for this class include quasi-threshold graphs [2], and,
as illustrated in Theorem 2.3(iii), P4-free chordal graphs [18, Ch. 7.9].

Theorem 2.3 (Golumbic [11], Yan et. al. [24]). Let G be a graph. Then the following
conditions are equivalent:

(i) G is trivially perfect;
(ii) G contains no induced C4 or P4;
(iii) G is both chordal and a cograph.

Theorem 2.4. A graph G is trivially perfect if and only if every coloring of G is also a
star coloring.

Proof. (⇐) : Let G be a graph such that Φs(G) = Φ(G). If G contains an induced subgraph
G′ ∈ {C4, P4}, then there must exist some coloring φ ∈ Φ(G) that colors G′ using only
two colors, which means that φ /∈ Φs(G), a contradiction. It follows from Theorem 2.3
that G is trivially perfect.

(⇒) : Suppose G is trivially perfect, and assume for the sake of contradiction that
there exists some coloring φ ∈ Φ(G) such that φ /∈ Φs(G). Then for some P4abcd in G
we must have φ(a) = φ(c) = i and φ(b) = φ(d) = j, where i 6= j. Because G has no
induced P4, at least one of the edges ad, ac, or bd must be present in G. If ad ∈ E, then
{a, b, c, d} induces a C4 unless ac or bd is also present, where the presence of either one
contradicts the 2-colorability of the P4. Therefore we have Φs(G) = Φ(G), which is the
desired result.

Corollary 2.5. If G is a trivially perfect graph, then χ(G) = χa(G) = χs(G).

Corollary 2.6. A graph is trivially perfect if and only if it is both even-hole-free and a
cograph.

A graph is a cograph if it has no induced P4. Cographs can be recognized in linear
time [6].

Theorem 2.7. Let G = (V,E) be a graph. Then G is a cograph if and only if every
acyclic coloring of G is also star coloring.
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Proof. (⇒) : Assume G is a cograph, and let φ be an acyclic coloring of G. Furthermore,
let P = abcd be a (not necessarily induced) P4 in G; we will show that φ assigns at least
three different colors to the vertices in P. Because G is a cograph (and thus contains no
induced P4, we know that at least one of the following is true: (1) ad ∈ E, (2) ac ∈ E, (3)
bd ∈ E. If ad ∈ E, then abcd constitutes a C4 in G, and because φ is an acyclic coloring,
φ must assign at least three colors to the vertices in P. Otherwise, assume without loss of
generality that ac ∈ E (the case where bd ∈ E holds symmetrically), and observe that abc
is a triangle in G. This implies that φ assigns at least three colors to P, which completes
this direction.

(⇐) : Let G have the property that every acyclic coloring φ of G is also star coloring,
and assume for the sake of contradiction that there exist vertices w, x, y, z ∈ V that induce
a P4 in G (in that order). It follows that there exists some acyclic coloring φ such that
φ(w) = φ(y) and φ(x) = φ(z). Such a coloring makes wxyz a bichromatic P4, which is a
contradiction. Thus G cannot contain an induced P4, and we may conclude that G is a
cograph, as desired.

Corollary 2.8. If G is a cograph, then χa(G) = χs(G).

Corollary 2.9. If φ is a proper coloring of a cograph G, then either φ causes a bichromatic
cycle in G or φ is also a star coloring.

3 Algorithms and complexity on restricted classes

Let us now turn our attention towards algorithms for finding optimal acyclic and star
colorings on special classes of graphs. As we saw in the case of chordal graphs, algorithms
for one coloring problem can be readily adapted for solving a different coloring problem
when the input graph belongs to a particular class. In this section, we state some results
that follow in the same vein from Theorems 2.1, 2.4, and 2.7 after reviewing what is
known about finding optimal acyclic and star colorings on special classes of graphs. We
also present some open problems related to this work. Before doing so, however, we briefly
discuss the nature of algorithms designed to work on restricted input domains.

Promise vs. robust algorithms. We consider two different types of algorithms for
solving problems on particular classes of graphs. A promise algorithm assumes that the
input is in the restricted class, and may have unknown or undefined behavior when this
is not the case. It is reasonable to consider promise algorithms exclusively in the case of
chordal graphs, as membership in this class can be decided in linear time. Thus when
we are given a graph to acyclically color, we can first check and see whether the graph is
chordal, and proceed with our promise algorithm if this is the case. If the graph is not
chordal, we may either try again with a different class or simply proceed with an heuristic
or approximation algorithm.

Informally, an algorithm that solves a problem on a restricted domain is called robust
([20],[22, Ch. 14]) if it doesn’t malfunction when the input doesn’t fall in the domain of
interest. More precisely, a robust algorithm for a problem π on a class C must behave in
the following way. If the input is in the class C, then the algorithm produces the correct
output. Otherwise, the algorithm must either produce the correct output or return a
certificate that the input is not in class C.

Thus for chordal graphs, and any other class that can be recognized efficiently, a
promise algorithm can be made robust by first running a recognition algorithm. We
must be careful in doing so, however, because there are many classes for which no linear
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time recognition algorithm is known. The resulting robust algorithm will run in time
proportional to the sum of the running times of the recognition and promise algorithms.

Finding optimal acyclic colorings. Coleman and Cai [4] discovered the notion of
acyclic coloring as a formulation of a problem related to the estimation of sparse Hessian
matrices via substitution methods. Unaware of the work in the graph theory literature,
they called it “cyclic” coloring. They demonstrated that this problem is NP-complete even
for bipartite graphs. Many of the known algorithms for acyclic coloring are for graphs with
bounded maximum degree [21, 7]. In particular, graphs with maximum degree ≤ 3 can
be colored with 4 or fewer colors in linear time, and graphs with maximum degree ≤ 5
can be colored with 9 or fewer colors in linear time. Note that these algorithms do not
necessarily find optimal colorings.

Suppose we are given a graph G and asked to find an optimal acyclic coloring. We
now discuss ways in which Theorem 2.1 might be of some use in finding such a color-
ing. It is not currently known whether even-hole-free graphs can be colored optimally in
polynomial time. However, if G is an arbitrary graph, we can determine in polynomial
time whether G is even-cycle-free [3] and, if so, we can use one of the many heuristics
and approximation algorithms for proper coloring general graphs. It follows from Theo-
rem 2.1 that approximation bounds and other properties of such algorithms would also
hold when they are applied to acyclic coloring on even-hole-free graphs. In some cases,
we may know beforehand that the graphs given to us will have special structure. We
may, for instance, be working with an application for which it is known that the matrices
involved will always correspond to even-hole-free graphs. If no such structure is known,
however, we may be tempted to attempt to recognize arbitrary graphs as even-hole-free.
However, given that it is not known whether this can be done in a way that is practical,
it is unlikely that such a strategy will be more economical than simply running general
coloring heuristics and approximation algorithms on general graphs, subsequently check-
ing the colorings they produce for bichromatic cycles, which can be done in polynomial
time. The bottleneck here is currently recognizing even-hole-free graphs; the best known
algorithm runs in O(n15) time [3]. Ideally, we would want the stronger result, which would
be an algorithm for coloring (and thus acyclicly coloring) the entire class of even-hole-free
graphs. Assume for the moment that we have access to a fast (o(n15), say) algorithm for
coloring even-hole-free graphs, and we wish to use this algorithm in a context where we are
given a general graph and asked to find an optimal acyclic coloring. If we proceed by first
trying to recognize whether the graph is even-hole-free (using the O(n15) algorithm), then
the speed of our fast coloring algorithm will be irrelevant, as the cost of the recognition
step will dominate.

However, we may avoid being constrained by the complexity of the recognition problem,
as it is not necessary that we use a promise algorithm. What is really desired is a robust
algorithm such as the following.

Problem 1. Devise a polynomial-time algorithm that when given a graph G returns either
an optimal acyclic coloring or a certificate that G isn’t even-hole-free.

Note that the algorithm proposed in Problem 1 does not act as a recognition algorithm,
as it may also return an optimal acyclic coloring for graphs that aren’t even-hole-free.

Another possibility is to consider subclasses of even-hole-free graphs for which coloring
can be solved efficiently. For example, Theorem 1.2 gave us a linear-time algorithm for
acyclic coloring on chordal graphs. Another such subclass is the β-perfect graphs, which
can also be colored efficiently. Whether these graphs can be recognized efficiently, however,
is an open problem (though it is known to be in co-NP [2]).
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even-hole-free
recognition: O(n15)
coloring: Open

chordal
recognition: O(n+m)
coloring: O(n+m)

β-perfect
recognition: Open (∈ co-NP)
coloring: in P

(even-hole,diamond)-free
recognition: O(n15)
coloring: in P

Figure 1: Some classes of graphs that are even-hole-free.

Similarly, the (even-hole,diamond)-free graphs are a subclass of the β-perfect graphs
that can be colored (and thus acyclicly colored) in polynomial time. It was also shown
in [16] that the (even-hole,diamond)-free graphs are a subclass of the β-perfect graphs,
which in turn are a subclass of the even-hole-free graphs.

Corollary 3.1. There is a polynomial time robust algorithm for finding an optimal acyclic
coloring of (even-hole,diamond)-free graphs.

Finding optimal star colorings. We discussed algorithms for star coloring cographs
and trivially perfect graphs at the beginning of this section. As the boundary between
tractability and intractability is of interest for this problem, we note here some NP-
completeness results related to optimal star coloring of graphs. Coleman and Moré [5]
showed that the decision variant of this problem is NP-complete even for bipartite graphs.
The following results were shown in [1].

(i) It is NP-complete to determine whether χ(G) = χs(G), even is G is a planar graph
with χ(G) = 3.

(ii) It is NP-complete to determine whether a graph can be star colored with 3 colors,
even for planar bipartite graphs.

(iii) For 2 ≤ t ≤ k and k > 2, given a graph G with χ(G) = t, it is NP-complete to
decide if χs(G) ≤ k.

Given that we can find an acyclic coloring of a chordal graph in linear time, we might
wonder whether the same is true for star coloring. A graph G is a split graph if its vertices
can be partitioned into sets V1 and V2 such that V1 induces a clique and V2 induces an
independent set. The split graphs are a well-known subclass of the chordal graphs.

Problem 2. Find a polynomial time algorithm or show that it is NP-complete to deter-
mine whether χ(G) = χs(G) for a split graph G.

Finding optimal acyclic and star colorings. Trivially perfect graphs can be rec-
ognized and optimally colored in linear time [24]. The following result implies that an
optimal star coloring of a quasi-threshold graph can also be found in linear time. Note
that as a subclass of the interval graphs, these can be colored easily in linear time. The
following result follows from Theorem 2.3(iiii), which states that every trivially perfect
graph is also chordal.
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Corollary 3.2. There is a linear-time robust algorithm that solves the acyclic and star
coloring problems for trivially perfect graphs.

As the trivially perfect graphs are a subclass of the cographs, Corollary 3.2 also follows
from the following theorem.

Theorem 3.3 ([17]). There is a linear time robust algorithm for finding acyclic and star
colorings of cographs.

4 Generalization to other restricted coloring problems

We consider here the generalization of this framework to other restricted coloring prob-
lems. The main idea behind our approach hinges on viewing restricted colorings in terms
of forbidden subgraphs in the graphs induced by any two color classes. We give the fol-
lowing propositions (without proof), which indicate some implications of the suggested
framework.

Proposition 4.1. A coloring φ of a graph G is proper if and only if the subgraph G′

induced by any two colors is C2k+1-free (G′ has no induced odd cycles).

Proposition 4.2. A coloring φ of a graph G is an acyclic coloring if and only if the
subgraph induced by any two colors is Ck-free.

Proposition 4.3. A coloring φ of a graph G is a star coloring if and only if the subgraph
induced by any two colors is (P4,Ck)-free.

There is another coloring variant which arises out of both graph theoretical and applied
settings (again the evaluation of sparse derivative matrices). A distance-2 coloring is
a proper coloring with the additional restriction that no vertex shares its color with a
distance-2 neighbor. We give the following without proof, where part (ii) will be the most
relevant for our purposes.

Proposition 4.4. Let φ be a coloring of a graph G. The following conditions are equiva-
lent:

(i) φ is a distance-2 coloring;
(ii) The subgraph induced by any two colors is (P3,C3)-free;
(iii) The subgraph induced by any two colors is an induced matching;
(iv) The subgraph induced by any 3 vertices is disconnected.

A coloring φ is a linear coloring [25] if the subgraph induced by any two color classes is
a disjoint collection of paths. A more appropriate name for our framework is path coloring.

Proposition 4.5. A coloring φ is a linear (path) coloring if and only if the subgraph
induced by any two colors is (K1,3,Ck)-free.

A graph G is a caterpillar if it has a dominating path.

Definition 1 (caterpillar coloring). A coloring φ of a graph G is a caterpillar coloring if
the subgraph induced by any two color classes is a disjoint collection of caterpillars.

Proposition 4.6. A coloring φ is a caterpillar coloring if and only if the subgraph induced
by any two colors is (T2,Ck)-free.
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C2k+1-free

Bipartite (dist-1) coloring

{Ck : k 6= 4}-free
Chordal coloring

Ck-free

Acyclic coloring

{T2,Ck}-free
Caterpillar coloring

{P5,T2,E,K1,4,Ck}-free
Fork coloring

{P4,Ck}-free
Star coloring

{P4,K1,4,Ck}-free
K1,3 (claw) coloring

{K1,3,Ck}-free
Path (linear) coloring

{P5,K1,3,Ck}-free
P4 coloring

{P4,K1,3,Ck}-free
P3=K1,2 coloring

{P3,K1,3,Ck}-free
P2=K1,1 (dist-2) coloring

Figure 2: A collection of restricted coloring problems ordered by containment. Shown here
is the Hasse diagram of the lattice ordered set PΠ = 〈Π,≤χ〉.

Proposition 4.7. A graph G is claw-free if and only if every proper coloring either 2-
colors a cycle or the subgraph induced by any two colors is a disjoint collection of paths.

Proposition 4.8. A graph G is (even-hole,claw)-free if and only if every proper coloring
of G is also a path coloring.

Thus far, we have considered only colorings for which the connected components of
every 2-colored induced subgraph are trees. We may also consider other types of bipartite
graphs. A graph G is a chordal bipartite graph if G is bipartite and every cycle of length
greater than 4 has a chord. A coloring φ of a graph G is a chordal coloring if the subgraph
induced by any two color classes is a disjoint collection of chordal bipartite graphs.

Proposition 4.9. A coloring φ is a chordal coloring if and only if the subgraph induced
by any two colors is ({Ck : k 6= 4})-free.

We might also consider other classes of bipartite graphs. For example, we might require
that every connected component in the subgraph induced by any two color classes is a
chain graph (2K2-free).
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As a general suggestion, we propose the following framework in which to classify and
study restricted coloring problems. Let Π be a (possibly infinite?) collection of coloring
problems. We define a poset PΠ = 〈Π,≤χ〉, where for any π1, π2 ∈ Π we have π1 ≤χ π2

if and only if Φπ1 ⊆ Φπ2 . We may begin by considering the resulting poset on all classes
of graphs, and investigate how it relates to the corresponding poset when restricted to
particular classes of graphs. For example, we have seen that if G is even-hole-free, then
the classical coloring and acyclic coloring problems collapse. We may view this as a
contraction of their respective elements in PΠ.

5 Concluding remarks

All the coloring problems discussed in this paper have multiple equivalent formulations.
Acyclic and star colorings can be defined by the requirement that every cycle or P4 uses
at least three colors, respectively. We have seen that these problems can also be defined
in terms of the structure of the subgraphs induced by every pair of color classes, which
is a forest in the case of acyclic coloring and a disjoint collection of stars in the case of
star coloring. The latter approach has proven useful in designing practical heuristics for
large instances [9]. Additionally, star coloring has an equivalent formulation in terms of
in-colorings of oriented graphs [19, 1, 15].

In Section 4, we proposed a new framework which is especially useful for studying the
behavior of these problems on restricted classes of graphs. In particular, we suggest that
coloring problems can be considered in terms of forbidden induced subgraphs in the graphs
induced by pairs of color classes. This framework has be shown to provide a connections
between acyclic and star coloring, as well as other problems mentioned in the literature,
such as path (or linear) and distance-k coloring. From this perspective, it is possible to
leverage what is known about graphs defined by forbidden induced subgraphs to identify
graph classes which have particular behavior with respect to these problems. In many
cases, as shown here, this also allows us to exploit the properties of such graph classes in
order to design efficient algorithms. It is our hope that advances in this direction will be
useful for applications that arise in scientific computing.
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Radhika Ramamurthi. Coloring with no 2-colored P4s. Electr. J. Comb., 11(1), 2004.
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